Effects of small ischemic lesions in the primary motor cortex on neurophysiological organization in ventral premotor cortex.
نویسندگان
چکیده
After a cortical lesion, cortical areas distant from the site of injury are known to undergo physiological and anatomical changes. However, the mechanisms through which reorganization of distant cortical areas is initiated are poorly understood. In a previous publication, we showed that the ventral premotor cortex (PMv) undergoes physiological reorganization after a lesion destroying the majority of the primary motor cortex (M1) distal forelimb representation (DFL). After large lesions destroying >50% of the M1 DFL, the PMv DFL invariably increased in size, and the amount of the increase was positively correlated with the size of lesion. To determine whether lesions destroying <50% of the M1 DFL followed a similar trajectory, we documented PMv reorganization using intracortical microstimulation techniques after small, ischemic lesions targeting subregions within the M1 DFL. In contrast to earlier results, lesions resulted in a reduction of the PMv DFL regardless of their location. Further, because recent anatomical findings suggest a segregation of PMv connectivity with M1, we examined two lesion characteristics that may drive alterations in PMv physiological reorganization: location of the lesion with respect to PMv connectivity and relative size of the lesion. The results suggest that after a lesion in the M1 DFL, the induction of representational plasticity in PMv, as evaluated using intracortical microstimulation, is related more to the size of the lesion than to the disruption of its intracortical connections.
منابع مشابه
Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery.
Although recent neurological research has shed light on the brain's mechanisms of self-repair after stroke, the role that intact tissue plays in recovery is still obscure. To explore these mechanisms further, we used microelectrode stimulation techniques to examine functional remodeling in cerebral cortex after an ischemic infarct in the hand representation of primary motor cortex in five adult...
متن کاملEffects of postinfarct myelin-associated glycoprotein antibody treatment on motor recovery and motor map plasticity in squirrel monkeys.
BACKGROUND AND PURPOSE New insights into the brain's ability to reorganize after injury are beginning to suggest novel restorative therapy targets. Potential therapies include pharmacological agents designed to promote axonal growth. The purpose of this study was to test the efficacy of one such drug, GSK249320, a monoclonal antibody that blocks the axon outgrowth inhibition molecule, myelin-as...
متن کاملThe Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملReorganization of the human ipsilesional premotor cortex after stroke.
The substrates that mediate recovery of motor function after stroke are incompletely understood. Several primate and human studies proposed the involvement of the premotor cortex of the lesioned hemisphere. Here, we studied four chronic stroke patients with focal subcortical lesions affecting the corticospinal outflow originating in the primary motor cortex (M1) and good motor recovery. We test...
متن کاملAnatomo-functional organization of the ventral primary motor and premotor cortex in the macaque monkey.
The ventral agranular frontal cortex of the macaque monkey is formed by a mosaic of anatomically distinct areas. Although each area has been explored by several neurophysiological studies, most of them focused on small sectors of single areas, thus leaving to be clarified which is the general anatomo-functional organization of this wide region. To fill this gap, we studied the ventral convexity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 96 6 شماره
صفحات -
تاریخ انتشار 2006